Hello

•Find the circumference of a circle with a radius of 0.75m.

Uniform Circular Motion

Determining Speed

•How do we determine the speed of an object moving in a straight line?

Angular Velocity

- The velocity of an object moving in a circular path.
- If I know the radius of a circle, how can I determine the speed of an object traveling around it?

A car drives in a circle with a radius of $\frac{3}{2}$ m in $\frac{4}{2}$ sec. What is the car's velocity?

$$V = \frac{2\pi r}{L} = \frac{2\pi 3m}{4s} = 4.712 \frac{m}{S}$$

A motorcycle rides around a cage with a radius of 4m in 2.5sec. What is the velocity of the

motorcycle?

Tangential and Angular Velocity

- Velocity in a straight line.
- When an object moves in a circle, something has to keep the object in the circle.
- •Some force has to keep the object moving in a circle.

Velocity and inward force

- What's keeping the object moving in a circle?
- •What happens when that force is no longer present?

Velocity Vector in Circular Motion Centripled $\vec{a}_{celeration}$ Acceleration has constant magnitude but varying direction. \vec{v} \vec{a}_{rad} \vec{v} Velocity and vector in Circular Motion Acceleration has constant magnitude but varying direction. \vec{v} Velocity and vector in Circular Motion Acceleration has constant magnitude but varying direction.

Acceleration = $\Delta V/t$

•∆V=Vf-Vi

•Draw the vectors for two points on a circle.

Centripetal Acceleration

- A center seeking force.
- •The tension on a rope is from the pull towards the center.
- •There is NO centrifugal (center fleeing) force. You can't push with a rope.

Determining Acceleration

- •V is the velocity that an object moves around a circle.
- •r is the radius of the circle.
- $a = (V^2)/r$

Students are playing crack the whip. If the person on the outside (5m from the center) is running at 4m/s, what is their acceleration?

V = 4m/S V = 0 C = 7 C = 5m C = 5m C = 7/r = 4m/S C = 7/r = 5m C = 7/r = 5m C = 7/r = 5m C = 7/r = 5m

A child sits 3.5m from the center of a merry go round. If it makes one revolution every 11 sec, what is the centripetal acceleration of the child?

$$T=3.5m$$
 $V=2\pi h 3.5^{2} 2\pi t$ $t=115$ $t=115$ $Ge=7$ $V=2^{m}/5$ $Ge=7$ $Ge=7$

Determining Centripetal Force

- •F=ma.
- •If we know the centripetal acceleration of an object and it's mass, we can solve for the force on the object.

If the student from the previous problems has a mass of 62kg, what is the force on their arm? From the "crack the whip" problem.

 $K_{*}^{\circ} M = 62 \text{ kg}$ $Q = 3.1 \frac{m}{5^{2}}$ $F = ? = mq = 62 \frac{m}{5^{2}} - 3.1 \frac{m}{5^{2}} = 192.2 \text{ N}$

If the motorcycle and it's rider have a combined mass of 200kg, what is the force exerted on the

circler by the case?

$$t = 2.5s$$
 $C = 4\pi^2 r$
 $C = 4\pi^2 r$
 $C = 4\pi^2 r$
 $C = 4\pi^2 r$

Determine the average acceleration of the demo.

- •How are you going to collect the data?
- What is the magnitude of the force acting on the object?

$$M = 605 = 0.06 \text{ kg}$$

 $t = 70 \text{ cm} = 0.7 \text{ m}$
 $t = 8.5 / 0 = 0.85 \text{ s}$

Sum of the Accelerations

- •I have a bucket of water on a rope.
- •I swing it over my head and do not want the water to spill out.
- •The centripetal acceleration needs to be greater than the acceleration of gravity.

Approach

- The centripetal acceleration has to be greater than or equal to the acceleration due to gravity.
- •If they are equal, draw an FBD for the bucket at the top and the bottom of the circular path.

The radius of the circle is ____m. What is the longest period that will allow the water to stay in the bucket?

Figure 17-1 Spinning a bucket filled with water over

Put it all together

- •If you know the radius and the period, you can solve for velocity.
- You can now solve for acceleration.
- If you know the mass of the object, you can determine the centripetal force on the object.

Why we don't fly off the spinning Earth

- •Earth has a radius of 6.37 x 10⁶m.
- •If the period is one day, what is the centripetal acceleration of Earth?
- What is the centripetal force on a 65kg person? Fc=2.2N

 $C = 0.033^{m/2}$

